
MONTREAL JUNE 30, JULY 1ST AND 2ND 2012

MONTREAL JUNE 30, JULY 1ST AND 2ND 2012

WebObjects Optimization:
EOF and Beyond
Chuck Hill, VP Development
Global Village Consulting, Inc.
 Ranked 76th in 24th annual PROFIT 200 ranking of
 Canada’s Fastest-Growing Companies by PROFIT Magazine!
WOWODC 2012

Session Overview

• Outline:

• Follow the architecture

• Three kinds of optimization:

• low effort, high effort, application specific

• Most is pretty easy

A WOrd of Advice

• Be Productive: Measure, don’t Guess

• Seek High ROI (Return On Investment)

• Premature Optimization

Performance Measuring

• Use realistic set of data

• Beware the first request!

• jperf, jmeter, shark, range of options

• Simple as NSTimestamp and logging

• Wonder has functionality too

• WOEvent and EOEvent can be used also

ERProfiling and Heat Map
• From Mike Schrag and Apple

• Understand how your app is functioning

• Understand why it's slow

• Designed around WebObjects

• Page-based approach to profiling

• Look at the statistics for individual pages and actions

End to End

Client Web Server
Relational Database

App Instances

WO
Adaptor

Browser Considerations

• gzip compression

• er.extensions.ERXApplication.responseCompressionEnabled=true

• Minify js

• Combine CSS

• Combine images

• Minify HTML and CSS

WebServer Side
• mod_gzip

• mod_deflate

• mod_expires

<IfModule mod_expires.c>

 ExpiresActive On

 ExpiresDefault A60

 ExpiresByType application/javascript A3600

 ExpiresByType text/css A3600

 ExpiresByType text/html A1

Apache Tuning

• MinSpareServers 10

• MaxSpareServers 20

• MaxRequestsPerChild 10000

• Timeout 45

• MaxKeepAliveRequests 50000

• KeepAliveTimeout 15

• ServerLimit 2048

• ListenBackLog 511

• MaxClients 128

WO Adaptor Settings
• FastCGI in Wonder

• Keep worker threads and listen queue size low

• Only default (Round Robin) load balancing works(?)

• Interleave instances across servers

Application and Session

• setAllowsConcurrentRequestHandling(true);

• setCachingEnabled(true);

• -WODebuggingEnabled=false

• setSessionTimeOut(10 * 60);

• setPageCacheSize(5);

• setPermanentPageCacheSize(5);

WOComponents
• Stateless components are harder to write but lowers memory

usage

• Manual binding synchronization requires more code but less
processing

• Return context().page() instead of null

• Lazy creation defers processing and memory usage until needed

public String someValue() {
 if (someValue == null) {

 // Create someValue here
 }
 return someValue;
}

Java

• new Integer(8) Integer.valueOf(8)

• StringBuffer StringBuilder

• Null references when not needed

• Heap Size

-Xms256m -Xmx512m

• Google for advanced heap size tuning articles

Using the Snapshot Cache
• Rows for fetches objects stored in EODatabase as snapshots

• Snapshots have a Global ID, retain count, and fetch timestamp

• Using the row snapshots is fast

• following relationships

• objectForGlobalID, faultForGlobalID

• Consider object freshness needs

• Fetch Specs go to database

• Raw rows go to database

EOSharedEditingContext
ERXEnterpriseObjectCache

• Both address “read mostly” frequent access data

• Both prevent snapshots from being discarded

• EOSharedEditingContext requires few changes

• ... but may introduce bugs. Maybe.

• ERXEnterpriseObjectCache requires more work

• Key based object access (or global ID)

• ... but you have the source and it is commonly used

• EOModel “Cache in Memory” never refreshes

ERXEnterpriseObjectCache Usage
ERXEnterpriseObjectCache cache = new ERXEnterpriseObjectCache(
 entityName, keyPath, restrictingQualifier, timeout,
 shouldRetainObjects, shouldFetchInitialValues,
 shouldReturnUnsavedObjects);

ERXEnterpriseObjectCache cache = new ERXEnterpriseObjectCache(
 “BranchOffice”, branchCode, null, 0, true, true, true);

public static BranchOffice branchWithCode(EOEditingContext ec, Long id){
 return (BranchOffice)officeCache().objectForKey(ec, id);
}

BranchOffice montrealBranch = BranchOffice.branchWithCode(ec, “MTL”);

Mass Updates

• Sometimes EOF is not the best solution

• e.g. bulk deletions will fetch all of the EOs first

• ERXEOAccessUtilities

• deleteRowsDescribedByQualifier()

• updateRowsDescribedByQualifier()

• insertRows()

• ERXEOAccessUtilities.evaluateSQLWithEntityNamed

Using Custom SQL

• Sometimes there is no other way

• Easier than writing a custom EOQualifier

• EOUtilities

• ERXEOAccessUtilities

ERXBatchingDisplayGroup
• Drop-in replacement for WODisplayGroup

• Alternative to limiting data set size

• Fetches one batch of EOs at a time

• Low memory and fetch overhead

• Still fetches all Primary Keys

• Kieran’s LIMIT option

• ERXBatchNavigationBar

• AjaxGrid and AjaxGridNavBar

Batch Faulting (Fetching)

• Optimistically faults in objects

• Set in EOModel

• Entity or Relationship

• How big should a batch be?

• Two is twice as good as none

• 10 - 20 is a good guess

Prefetch Relationships
• Extension/alternative to batch faulting

• Fetches everything at once

• Allow for more precise tuning that Batch Faulting

• Only useful if you need all / most of the objects

• EOFetchSpecification.setPrefetchingRelationshipKeyPaths()

• Can only follow class property relationship from root

• One fetch per relationship key path with migrated qualifier

• Not optimal if most of objects are in snapshot cache

ERXBatchFetchUtilities

• Alternative to pre-fetching and batch faulting

• Very focused batching of fetches

• Efficiently batch fetch arbitrarily deep key paths

• batchFetch(NSArray sourceObjects, NSArray keypaths)

• One Gazillion options to control fetch

When to use Raw Rows

• Data ONLY, no logic, no methods, no code, no anything

• NSDictionary of key/value pairs

• Use with a lot of data from which you only need a few EOs

• EOFetchSpecification, EOUtilities, ERXEOAccessUtilities

• Late promotion with:

• EOUtilities.objectFromRawRow(ec, entityName, row)

• ERXEOControlUtilities.
faultsForRawRowsFromEntity(ec, rows, entityName)

EOFetchSpecification Limit
• setFetchLimit(int limit)

• This may not do what you expect

• The standard is to fetch ALL rows and limit in memory

• prefetchingRelationshipKeyPaths do not respect LIMIT

• Check the SQL!

• Wonder fixes SOME databases to LIMIT at database

• YOU can fix the rest! Contribute to Wonder!

• ERXEOControlUtilities.objectsInRange(ec, spec, start, end, raw)

Don‘t Model It! Just Say NO!

• Avoid unnecessary relationships

• Can Model It != Should Model It

• Relationships from look-up tables to data

• Address TO Country Country TO Address

• EOF will fault in ALL of the data rows, VERY slow

• Do. Not. Do. This.

• Fetch the data IF you ever need it

Factor out large CLOBs

• Simple and easy to avoid

• Fetching large CLOBs (or BLOBs) consumes resources

• Move LOB values to their own EO

• CLOB EO is to-one and Owns destination

• object.clobValue() object.clob().value()

• large values are fetched only on demand

Model Optimization

• Trim the fat

• Map multiple Entities to same table (read-only, careful!)

• Reduce number of attributes locked

• De-normalize (views, flattening)

• Keep complex data structures in LOBS

• Stored Procedures

Inheritance and Optimization

• Inheritance can be very useful

• Inheritance can be very slow

• Keep hierarchies flat

• Avoid concrete super classes

• Single Table inheritance is the most efficient

• Vertical inheritance is the least efficient

Monitor the SQL
• easiest, cheapest, highest payback performance tuning

• -EOAdaptorDebugEnabled true

• Watch for:

• repeated single row selects

• slow queries (more data makes more obvious)

• Check for:

• indexes for common query terms

ERXAdaptorChannelDelegate
SQLLoggingAdaptorChannelDelegate
• Tracks and logs the SQL that gets sent to the database

• ERXAdaptorChannelDelegate

• thresholds for logging levels

• filter by Entity (regex)

• SQLLoggingAdaptorChannelDelegate

• CSV formatted log message output for Excel analysis

• can log data fetched

• can log stack trace of fetch origin

ERChangeNotificationJMS

• Synchronizes EOs and snapshots between application instances

• Can reduce fetching

• Can reduce need to fetch fresh data

• Will reduce save conflicts

Join Table Indexes

• Join tables only get one index

• Some EOF generated SQL can’t be optimized

• Results in table scan

• Manually add complementary index

Database Tuning

• Check the plan, Stan

• Cache, cache, cache

• RAM, RAM, RAM

• Check hit ratio and tune cache size

SURVs Optimization

Counters and Concurrency

• Situation: you need to count records according to some
criteria

• Problems:

• counting with a query is too slow

• so, create a counters row and update it in real time for new/
updated data

• thousands of users creating thousands of events on a short
time

• huge resource contention for the counter, lots of retries

Solution
• Solution: create several sub-counters!

• Counter identifier is one or more columns with whatever you
need to identify your counter (FK to other tables, whatever).

• SubCounter Number is a number identifying one sub counter for
the counter identifier

How Does it Work?
• Define a maximum number of sub counters

• When reading, simply select all counters for your identifier, and
obtain the sum of the value column.

• To update, SubCounter is random number 0 ... max counters - 1

• That’s it. You just reduced the probability of having OL failure and
repeating by a factor of 10

Q&A

MONTREAL JUNE 30, JULY 1ST AND 2ND 2012

MONTREAL JUNE 30, JULY 1ST AND 2ND 2012

WebObjects Optimization: EOF and Beyond

Chuck Hill
Global Village Consulting

